185

Plant Breeding Approaches in Developing Stress Tolerance

Silva, K. J., Brunings, A., Peres, N. A., Mou, Z., & Folta, K. M., (2015). The Arabidopsis

NPR1 gene confers broad-spectrum disease resistance in strawberry. Transgenic Res., 24(4),

693–704 Singh, A., (2015). Soil salinization and waterlogging: A threat to environment and

agricultural sustainability. Ecol. Indic., 57, 128–130.

Singh, A., (2018). Salinization of agricultural lands due to poor drainage: A viewpoint. Ecol.

Indic., 95, 127–130.

Singh, S., Singh, A., Kumar, S., Mittal, P., & Singh, I. K., (2018). Protease inhibitors: Recent

advancement in its usage as a potential biocontrol agent for insect pest management. Insect

Sci. https://doi. org/10.1111/1744-7917.12641.

Sripriya, R., Parameswari, C., & Veluthambi, K., (2017). Enhancement of sheath blight

tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice

chitinase (chi11) genes. Vitro Cell Dev Biol. Plant., 53(1), 12–21.

Su, Y., Wang, Z., Liu, F., Li, Z., Peng, Q., Guo, J., Xu, L., & Que, Y., (2016). Isolation and

characterization of ScGluD2, a new sugarcane beta-1, 3-glucanase D family gene induced

by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 stresses. Front Plant Sci., 7,

1348.

Su, Y., Xu, L., Wang, S., Wang, Z., Yang, Y., Chen, Y., & Que, Y., (2015). Identification,

phylogeny, and transcript of chitinase family genes in sugarcane. Sci. Rep., 5, 10708.

Takemoto, D., & Mizuno, Y., (2016). Belowground and aboveground strategies of plant

resistance against Phytophthora species. In: Belowground Defense Strategies in Plants (pp.

151–169). Springer, Cham.

Thakur, A. K., Singh, K. H., Sharma, D., Singh, L., Parmar, N., Nanjundan, J., & Khan, Y. J.,

(2018). Transgenic development for biotic and abiotic stress management in horticultural

crops. In: Genetic Engineering of Horticultural Crops (pp. 353–386). Academic Press,

London.

Tigchelaar, M., Battisti, D. S., Naylor, R. L., & Ray, D. K., (2018). Future warming increases

the probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci.,

115, 6644–6649. doi: 10.1073/pnas.1718031115.

Todaka, D., Shinozaki, K., & Yamaguchi-Shinozaki, K., (2015). Recent advances in the

dissection of drought-stress regulatory networks and strategies for development of drought-

tolerant transgenic rice plants. Front Plant Sci., 6, 84.

Trębicki, P., Nancarrow, N., Cole, E., Bosque-Pérez, N. A., Constable, F. E., Freeman, A. J.,

Rodoni, B., et al., (2015). Virus disease in wheat is predicted to increase with a changing

climate. Glob. Chang. Biol., 21(9), 3511–3519.

Ullah, A., Hussain, A., Shaban, M., Khan, A. H., Alariqi, M., Gul, S., Jun, Z., et al., (2018).

Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiol. Biochem.,

123, 149–159.

Vannini, C., Campa, M., Iriti, M., Genga, A., Faoro, F., Carravieri, S., Rotino, G. L., et al.,

(2007). Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4

gene. Plant Science, 173, 231–239.

Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M.,

et al., (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing

tolerance of Arabidopsis thaliana plants. The Plant Journal, 37, 115–127.

Vaughan, M. M., Block, A., Christensen, S. A., Allen, L. H., & Schmelz, E. A., (2018). The

effects of climate change associated abiotic stresses on maize phytochemical defenses.

Phytochem. Rev., 17, 37–49. doi: 10.1007/s11101-017-9508-2.